<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=utf-8"><meta name=Generator content="Microsoft Word 15 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:12.0pt;
        font-family:"Times New Roman",serif;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal-reply;
        font-family:"Calibri",sans-serif;
        color:#1F497D;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-family:"Calibri",sans-serif;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link=blue vlink=purple><div class=WordSection1><p class=MsoNormal>>I wouldn't find it so surprising if eventually the 20 or 40 block networks develop a set of convolutional channels that traces possible ladders diagonally across the board.<span style='font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D'><o:p></o:p></span></p><div><p class=MsoNormal><b><span style='font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D'><o:p> </o:p></span></b></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D'>Learning the deep tactics is more-or-less guaranteed because of the interaction between search and evaluation through the training process.<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D'>Let’s look at the base case for tactical expertise: the evaluation function has learned that capturing stones is good.<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D'>In that state, a very short ladder can be seen through by tactics (800 nodes of search). This results in a corrective force that adjusts the evaluation function.<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D'>Once the evaluation function knows that very short ladders are favorable, then the search can see through deeper ladders.<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D'>This continues as the ladders become longer and longer.<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D'><o:p> </o:p></span></p></div></div></body></html>